Internal
problem
ID
[8332]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
7
THE
LAPLACE
TRANSFORM.
7.2.2
TRANSFORMS
OF
DERIVATIVES
Page
289
Problem
number
:
39
Date
solved
:
Wednesday, March 05, 2025 at 05:35:20 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=2*diff(diff(diff(y(t),t),t),t)+3*diff(diff(y(t),t),t)-3*diff(y(t),t)-2*y(t) = exp(-t); ic:=y(0) = 0, D(y)(0) = 0, (D@@2)(y)(0) = 1; dsolve([ode,ic],y(t),method='laplace');
ode=2*D[ y[t],{t,3}]+3*D[y[t],{t,2}]-3*D[y[t],t]-2*y[t]==Exp[-t]; ic={y[0]==0,Derivative[1][y][0] ==0,Derivative[2][y][0] ==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-2*y(t) - 3*Derivative(y(t), t) + 3*Derivative(y(t), (t, 2)) + 2*Derivative(y(t), (t, 3)) - exp(-t),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0, Subs(Derivative(y(t), (t, 2)), t, 0): 1} dsolve(ode,func=y(t),ics=ics)