52.5.11 problem 41

Internal problem ID [8334]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 7 THE LAPLACE TRANSFORM. 7.2.2 TRANSFORMS OF DERIVATIVES Page 289
Problem number : 41
Date solved : Wednesday, March 05, 2025 at 05:35:22 AM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }+y&={\mathrm e}^{-3 t} \cos \left (2 t \right ) \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.722 (sec). Leaf size: 28
ode:=diff(y(t),t)+y(t) = exp(-3*t)*cos(2*t); 
ic:=y(0) = 0; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = \frac {{\mathrm e}^{-t}}{4}+\frac {{\mathrm e}^{-3 t} \left (-\cos \left (2 t \right )+\sin \left (2 t \right )\right )}{4} \]
Mathematica. Time used: 0.121 (sec). Leaf size: 30
ode=D[y[t],t]+y[t]==Exp[-3*t]*Cos[2*t]; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {1}{4} e^{-3 t} \left (e^{2 t}+\sin (2 t)-\cos (2 t)\right ) \]
Sympy. Time used: 0.242 (sec). Leaf size: 26
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(y(t) + Derivative(y(t), t) - exp(-3*t)*cos(2*t),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (\frac {\left (\sin {\left (2 t \right )} - \cos {\left (2 t \right )}\right ) e^{- 2 t}}{4} + \frac {1}{4}\right ) e^{- t} \]