52.6.2 problem 22

Internal problem ID [8337]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 7 THE LAPLACE TRANSFORM. 7.3.1 TRANSLATION ON THE s-AXIS. Page 297
Problem number : 22
Date solved : Wednesday, March 05, 2025 at 05:35:25 AM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }-y&=1+t \,{\mathrm e}^{t} \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.628 (sec). Leaf size: 15
ode:=diff(y(t),t)-y(t) = 1+t*exp(t); 
ic:=y(0) = 0; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = -1+\frac {{\mathrm e}^{t} t^{2}}{2}+{\mathrm e}^{t} \]
Mathematica. Time used: 0.055 (sec). Leaf size: 19
ode=D[y[t],t]-y[t]==1+t*Exp[t]; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {1}{2} e^t \left (t^2+2\right )-1 \]
Sympy. Time used: 0.196 (sec). Leaf size: 14
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t*exp(t) - y(t) + Derivative(y(t), t) - 1,0) 
ics = {y(0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (\frac {t^{2}}{2} + 1\right ) e^{t} - 1 \]