Internal
problem
ID
[8354]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
7
THE
LAPLACE
TRANSFORM.
7.3.1
TRANSLATION
ON
THE
s-AXIS.
Page
297
Problem
number
:
69
Date
solved
:
Wednesday, March 05, 2025 at 05:35:43 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+y(t) = piecewise(0 <= t and t < Pi,0,Pi <= t and t < 2*Pi,1,2*Pi <= t,0); ic:=y(0) = 0, D(y)(0) = 1; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+y[t]==Piecewise[{{0,0<=t<Pi},{1,Pi<=t<2*Pi},{0,t>=2*Pi}}]; ic={y[0]==0,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((0, (t >= 0) & (t < pi)), (1, (t >= pi) & (t < 2*pi)), (0, t >= 2*pi)) + y(t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 1} dsolve(ode,func=y(t),ics=ics)