Internal
problem
ID
[8405]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
8
SYSTEMS
OF
LINEAR
FIRST-ORDER
DIFFERENTIAL
EQUATIONS.
EXERCISES
8.2.
Page
346
Problem
number
:
11
Date
solved
:
Wednesday, March 05, 2025 at 05:44:44 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = -x(t)-y(t), diff(y(t),t) = 3/4*x(t)-3/2*y(t)+3*z(t), diff(z(t),t) = 1/8*x(t)+1/4*y(t)-1/2*z(t)]; dsolve(ode);
ode={D[x[t],t]==-x[t]-y[t],D[y[t],t]==3/4*x[t]-3/2*y[t]+3*z[t],D[z[t],t]==1/8x[t]+1/4*y[t]-1/2*z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(x(t) + y(t) + Derivative(x(t), t),0),Eq(-3*x(t)/4 + 3*y(t)/2 - 3*z(t) + Derivative(y(t), t),0),Eq(-x(t)/8 - y(t)/4 + z(t)/2 + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)