56.1.85 problem 84

Internal problem ID [8797]
Book : Own collection of miscellaneous problems
Section : section 1.0
Problem number : 84
Date solved : Monday, January 27, 2025 at 05:01:32 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=x^{2}+y^{2}-1 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 85

dsolve(diff(y(x),x)=x^2+y(x)^2-1,y(x), singsol=all)
 
\[ y = \frac {\left (-3-i\right ) \operatorname {WhittakerM}\left (1+\frac {i}{4}, \frac {1}{4}, i x^{2}\right )+4 \operatorname {WhittakerW}\left (1+\frac {i}{4}, \frac {1}{4}, i x^{2}\right ) c_{1} +\left (-2 i x^{2}+i+1\right ) \operatorname {WhittakerM}\left (\frac {i}{4}, \frac {1}{4}, i x^{2}\right )+\left (-2 i x^{2}+i+1\right ) c_{1} \operatorname {WhittakerW}\left (\frac {i}{4}, \frac {1}{4}, i x^{2}\right )}{2 x \left (c_{1} \operatorname {WhittakerW}\left (\frac {i}{4}, \frac {1}{4}, i x^{2}\right )+\operatorname {WhittakerM}\left (\frac {i}{4}, \frac {1}{4}, i x^{2}\right )\right )} \]

Solution by Mathematica

Time used: 0.220 (sec). Leaf size: 153

DSolve[D[y[x],x]==x^2+y[x]^2-1,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {i \left (x \operatorname {ParabolicCylinderD}\left (-\frac {1}{2}-\frac {i}{2},(-1+i) x\right )+(1+i) \operatorname {ParabolicCylinderD}\left (\frac {1}{2}-\frac {i}{2},(-1+i) x\right )-c_1 x \operatorname {ParabolicCylinderD}\left (-\frac {1}{2}+\frac {i}{2},(1+i) x\right )+(1-i) c_1 \operatorname {ParabolicCylinderD}\left (\frac {1}{2}+\frac {i}{2},(1+i) x\right )\right )}{\operatorname {ParabolicCylinderD}\left (-\frac {1}{2}-\frac {i}{2},(-1+i) x\right )+c_1 \operatorname {ParabolicCylinderD}\left (-\frac {1}{2}+\frac {i}{2},(1+i) x\right )} \\ y(x)\to \frac {(1+i) \operatorname {ParabolicCylinderD}\left (\frac {1}{2}+\frac {i}{2},(1+i) x\right )}{\operatorname {ParabolicCylinderD}\left (-\frac {1}{2}+\frac {i}{2},(1+i) x\right )}-i x \\ \end{align*}