52.10.23 problem 24

Internal problem ID [8417]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS. EXERCISES 8.2. Page 346
Problem number : 24
Date solved : Wednesday, March 05, 2025 at 05:47:25 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=3 x \left (t \right )+2 y \left (t \right )+4 z \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=2 x \left (t \right )+2 z \left (t \right )\\ \frac {d}{d t}z \left (t \right )&=4 x \left (t \right )+2 y \left (t \right )+3 z \left (t \right ) \end{align*}

Maple. Time used: 0.054 (sec). Leaf size: 66
ode:=[diff(x(t),t) = 3*x(t)+2*y(t)+4*z(t), diff(y(t),t) = 2*x(t)+2*z(t), diff(z(t),t) = 4*x(t)+2*y(t)+3*z(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= 2 c_{2} {\mathrm e}^{-t}+2 c_3 \,{\mathrm e}^{8 t}+{\mathrm e}^{-t} c_{1} \\ y &= c_{2} {\mathrm e}^{-t}+c_3 \,{\mathrm e}^{8 t} \\ z \left (t \right ) &= -\frac {5 c_{2} {\mathrm e}^{-t}}{2}+2 c_3 \,{\mathrm e}^{8 t}-{\mathrm e}^{-t} c_{1} \\ \end{align*}
Mathematica. Time used: 0.007 (sec). Leaf size: 135
ode={D[x[t],t]==3*x[t]+2*y[t]+4*z[t],D[y[t],t]==2*x[t]+2*z[t],D[z[t],t]==4*x[t]+2*y[t]+3*z[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{9} e^{-t} \left (c_1 \left (4 e^{9 t}+5\right )+2 (c_2+2 c_3) \left (e^{9 t}-1\right )\right ) \\ y(t)\to \frac {1}{9} e^{-t} \left (2 c_1 \left (e^{9 t}-1\right )+c_2 \left (e^{9 t}+8\right )+2 c_3 \left (e^{9 t}-1\right )\right ) \\ z(t)\to \frac {1}{9} e^{-t} \left (4 c_1 \left (e^{9 t}-1\right )+2 c_2 \left (e^{9 t}-1\right )+c_3 \left (4 e^{9 t}+5\right )\right ) \\ \end{align*}
Sympy. Time used: 0.135 (sec). Leaf size: 46
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
z = Function("z") 
ode=[Eq(-3*x(t) - 2*y(t) - 4*z(t) + Derivative(x(t), t),0),Eq(-2*x(t) - 2*z(t) + Derivative(y(t), t),0),Eq(-4*x(t) - 2*y(t) - 3*z(t) + Derivative(z(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = C_{3} e^{8 t} - \left (C_{1} + \frac {C_{2}}{2}\right ) e^{- t}, \ y{\left (t \right )} = C_{2} e^{- t} + \frac {C_{3} e^{8 t}}{2}, \ z{\left (t \right )} = C_{1} e^{- t} + C_{3} e^{8 t}\right ] \]