56.2.7 problem 7

Internal problem ID [8811]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 7
Date solved : Monday, January 27, 2025 at 05:03:24 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-x y^{\prime }-y x -x^{5}+24&=0 \end{align*}

Solution by Maple

Time used: 0.008 (sec). Leaf size: 71

dsolve(diff(y(x),x$2)-x*diff(y(x),x)-x*y(x)-x^5+24=0,y(x), singsol=all)
 
\[ y = -\pi \,{\mathrm e}^{-x -2} c_{1} \left (x +2\right ) \operatorname {erf}\left (\frac {i \sqrt {2}\, \left (x +2\right )}{2}\right )+i \sqrt {\pi }\, \sqrt {2}\, {\mathrm e}^{\frac {x \left (x +2\right )}{2}} c_{1} +{\mathrm e}^{-x} \left (x +2\right ) c_{2} -x^{4}+4 x^{3}-12 x^{2}+12 x +12 \]

Solution by Mathematica

Time used: 2.570 (sec). Leaf size: 102

DSolve[D[y[x],{x,2}]-x*D[y[x],x]-x*y[x]-x^5+24==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {1}{2} e^{-x} \left (-\sqrt {2 \pi } c_2 \sqrt {(x+2)^2} \text {erfi}\left (\frac {\sqrt {(x+2)^2}}{\sqrt {2}}\right )+e^x \left (-2 x^4+8 x^3-24 x^2+24 x+24\right )+2 \sqrt {2} c_1 (x+2)+2 c_2 e^{\frac {1}{2} (x+2)^2}\right ) \]