56.2.14 problem 14

Internal problem ID [8818]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 14
Date solved : Monday, January 27, 2025 at 05:03:36 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-y^{\prime }-y x -x&=0 \end{align*}

Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

dsolve(diff(y(x),x$2)-diff(y(x),x)-x*y(x)-x=0,y(x), singsol=all)
 
\[ y = {\mathrm e}^{\frac {x}{2}} \operatorname {AiryAi}\left (x +\frac {1}{4}\right ) c_{2} +{\mathrm e}^{\frac {x}{2}} \operatorname {AiryBi}\left (x +\frac {1}{4}\right ) c_{1} -1 \]

Solution by Mathematica

Time used: 12.788 (sec). Leaf size: 99

DSolve[D[y[x],{x,2}]-D[y[x],x]-x*y[x]-x==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{x/2} \left (\operatorname {AiryAi}\left (x+\frac {1}{4}\right ) \int _1^x-e^{-\frac {K[1]}{2}} \pi \operatorname {AiryBi}\left (K[1]+\frac {1}{4}\right ) K[1]dK[1]+\operatorname {AiryBi}\left (x+\frac {1}{4}\right ) \int _1^xe^{-\frac {K[2]}{2}} \pi \operatorname {AiryAi}\left (K[2]+\frac {1}{4}\right ) K[2]dK[2]+c_1 \operatorname {AiryAi}\left (x+\frac {1}{4}\right )+c_2 \operatorname {AiryBi}\left (x+\frac {1}{4}\right )\right ) \]