56.2.26 problem 25

Internal problem ID [8830]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 25
Date solved : Monday, January 27, 2025 at 05:03:48 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-8 y^{\prime }-y x -x^{3}+2&=0 \end{align*}

Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

dsolve(diff(y(x),x$2)-8*diff(y(x),x)-x*y(x)-x^3+2=0,y(x), singsol=all)
 
\[ y = {\mathrm e}^{4 x} \operatorname {AiryAi}\left (16+x \right ) c_{2} +{\mathrm e}^{4 x} \operatorname {AiryBi}\left (16+x \right ) c_{1} -x^{2}+16 \]

Solution by Mathematica

Time used: 6.257 (sec). Leaf size: 89

DSolve[D[y[x],{x,2}]-8*D[y[x],x]-x*y[x]-x^3+2==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{4 x} \left (\operatorname {AiryAi}(x+16) \int _1^x-e^{-4 K[1]} \pi \operatorname {AiryBi}(K[1]+16) \left (K[1]^3-2\right )dK[1]+\operatorname {AiryBi}(x+16) \int _1^xe^{-4 K[2]} \pi \operatorname {AiryAi}(K[2]+16) \left (K[2]^3-2\right )dK[2]+c_1 \operatorname {AiryAi}(x+16)+c_2 \operatorname {AiryBi}(x+16)\right ) \]