56.2.29 problem 28
Internal
problem
ID
[8833]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
2.0
Problem
number
:
28
Date
solved
:
Monday, January 27, 2025 at 05:03:52 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
\begin{align*} y^{\prime \prime }-y x -x^{3}+2&=0 \end{align*}
✓ Solution by Maple
Time used: 0.004 (sec). Leaf size: 18
dsolve(diff(y(x),x$2)-x*y(x)-x^3+2=0,y(x), singsol=all)
\[
y = \operatorname {AiryAi}\left (x \right ) c_{2} +\operatorname {AiryBi}\left (x \right ) c_{1} -x^{2}
\]
✓ Solution by Mathematica
Time used: 0.428 (sec). Leaf size: 290
DSolve[D[y[x],{x,2}]-x*y[x]-x^3+2==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x)\to \frac {6 \sqrt [3]{3} \pi x \operatorname {Gamma}\left (\frac {1}{3}\right ) \operatorname {Gamma}\left (\frac {5}{3}\right ) \operatorname {Gamma}\left (\frac {7}{3}\right ) \operatorname {Gamma}\left (\frac {8}{3}\right ) \left (\sqrt {3} \operatorname {AiryAi}(x)-\operatorname {AiryBi}(x)\right ) \, _1F_2\left (\frac {1}{3};\frac {2}{3},\frac {4}{3};\frac {x^3}{9}\right )+2 \sqrt [6]{3} \pi x^2 \operatorname {Gamma}\left (\frac {2}{3}\right )^2 \operatorname {Gamma}\left (\frac {7}{3}\right ) \operatorname {Gamma}\left (\frac {8}{3}\right ) \left (3 \operatorname {AiryAi}(x)+\sqrt {3} \operatorname {AiryBi}(x)\right ) \, _1F_2\left (\frac {2}{3};\frac {4}{3},\frac {5}{3};\frac {x^3}{9}\right )+\operatorname {Gamma}\left (\frac {5}{3}\right ) \left (3 \sqrt [3]{3} \pi x^4 \operatorname {Gamma}\left (\frac {4}{3}\right )^2 \operatorname {Gamma}\left (\frac {8}{3}\right ) \left (\operatorname {AiryBi}(x)-\sqrt {3} \operatorname {AiryAi}(x)\right ) \, _1F_2\left (\frac {4}{3};\frac {2}{3},\frac {7}{3};\frac {x^3}{9}\right )+\operatorname {Gamma}\left (\frac {2}{3}\right ) \operatorname {Gamma}\left (\frac {7}{3}\right ) \left (-\sqrt [6]{3} \pi x^5 \operatorname {Gamma}\left (\frac {5}{3}\right ) \left (3 \operatorname {AiryAi}(x)+\sqrt {3} \operatorname {AiryBi}(x)\right ) \, _1F_2\left (\frac {5}{3};\frac {4}{3},\frac {8}{3};\frac {x^3}{9}\right )+27 \operatorname {Gamma}\left (\frac {4}{3}\right ) \operatorname {Gamma}\left (\frac {8}{3}\right ) (c_1 \operatorname {AiryAi}(x)+c_2 \operatorname {AiryBi}(x))\right )\right )}{27 \operatorname {Gamma}\left (\frac {2}{3}\right ) \operatorname {Gamma}\left (\frac {4}{3}\right ) \operatorname {Gamma}\left (\frac {5}{3}\right ) \operatorname {Gamma}\left (\frac {7}{3}\right ) \operatorname {Gamma}\left (\frac {8}{3}\right )}
\]