56.2.50 problem 49
Internal
problem
ID
[8854]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
2.0
Problem
number
:
49
Date
solved
:
Tuesday, January 28, 2025 at 03:27:24 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x}&=0 \end{align*}
✓ Solution by Maple
Time used: 0.005 (sec). Leaf size: 26
dsolve(diff(y(x),x$2)-1/x*diff(y(x),x)-x^3*y(x)-x^4-1/x=0,y(x), singsol=all)
\[
y = x \left (-1+\operatorname {BesselI}\left (\frac {2}{5}, \frac {2 x^{{5}/{2}}}{5}\right ) c_{2} +\operatorname {BesselK}\left (\frac {2}{5}, \frac {2 x^{{5}/{2}}}{5}\right ) c_{1} \right )
\]
✓ Solution by Mathematica
Time used: 0.334 (sec). Leaf size: 316
DSolve[D[y[x],{x,2}]-1/x*D[y[x],x]-x^3*y[x]-x^4-1/x==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x)\to \frac {\frac {5 \left (x^{5/2}\right )^{13/5} \operatorname {Gamma}\left (\frac {4}{5}\right ) \operatorname {Gamma}\left (\frac {7}{5}\right ) \operatorname {BesselI}\left (\frac {2}{5},\frac {2 x^{5/2}}{5}\right ) \, _1F_2\left (\frac {4}{5};\frac {3}{5},\frac {9}{5};\frac {x^5}{25}\right )}{\operatorname {Gamma}\left (\frac {9}{5}\right )}-\frac {\sqrt [5]{5} \left (x^{5/2}\right )^{7/5} \operatorname {Gamma}\left (\frac {1}{5}\right ) \operatorname {Gamma}\left (\frac {3}{5}\right ) \operatorname {BesselI}\left (-\frac {2}{5},\frac {2 x^{5/2}}{5}\right ) \, _1F_2\left (\frac {1}{5};\frac {6}{5},\frac {7}{5};\frac {x^5}{25}\right )}{\operatorname {Gamma}\left (\frac {6}{5}\right )}+\frac {5 \left (x^{5/2}\right )^{3/5} \operatorname {Gamma}\left (-\frac {1}{5}\right ) \operatorname {Gamma}\left (\frac {7}{5}\right ) \operatorname {BesselI}\left (\frac {2}{5},\frac {2 x^{5/2}}{5}\right ) \, _1F_2\left (-\frac {1}{5};\frac {3}{5},\frac {4}{5};\frac {x^5}{25}\right )}{\operatorname {Gamma}\left (\frac {4}{5}\right )}+\sqrt [5]{5} x^{5/2} \left (-\frac {x^5 \left (x^{5/2}\right )^{2/5} \operatorname {Gamma}\left (\frac {3}{5}\right ) \operatorname {Gamma}\left (\frac {6}{5}\right ) \operatorname {BesselI}\left (-\frac {2}{5},\frac {2 x^{5/2}}{5}\right ) \, _1F_2\left (\frac {6}{5};\frac {7}{5},\frac {11}{5};\frac {x^5}{25}\right )}{\operatorname {Gamma}\left (\frac {11}{5}\right )}+10 \left (c_1 \operatorname {Gamma}\left (\frac {3}{5}\right ) \operatorname {BesselI}\left (-\frac {2}{5},\frac {2 x^{5/2}}{5}\right )+(-1)^{2/5} c_2 \operatorname {Gamma}\left (\frac {7}{5}\right ) \operatorname {BesselI}\left (\frac {2}{5},\frac {2 x^{5/2}}{5}\right )\right )\right )}{10\ 5^{3/5} x^{3/2}}
\]