56.3.19 problem 19

Internal problem ID [8877]
Book : Own collection of miscellaneous problems
Section : section 3.0
Problem number : 19
Date solved : Monday, January 27, 2025 at 05:11:32 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y x&=x \end{align*}

Solution by Maple

Time used: 0.008 (sec). Leaf size: 223

dsolve(x^4*diff(y(x),x$3)+x^3*diff(y(x),x$2)+x^2*diff(y(x),x)+x*y(x)= x,y(x), singsol=all)
 
\[ y = c_{2} x^{\frac {\left (47-3 \sqrt {249}\right ) \left (188+12 \sqrt {249}\right )^{{2}/{3}}}{192}+\frac {\left (188+12 \sqrt {249}\right )^{{1}/{3}}}{12}+\frac {2}{3}} \cos \left (\frac {\left (188+12 \sqrt {3}\, \sqrt {83}\right )^{{1}/{3}} \sqrt {3}\, \left (3 \sqrt {3}\, \sqrt {83}\, \left (188+12 \sqrt {3}\, \sqrt {83}\right )^{{1}/{3}}-47 \left (188+12 \sqrt {3}\, \sqrt {83}\right )^{{1}/{3}}+16\right ) \ln \left (x \right )}{192}\right )+c_3 \,x^{\frac {\left (47-3 \sqrt {249}\right ) \left (188+12 \sqrt {249}\right )^{{2}/{3}}}{192}+\frac {\left (188+12 \sqrt {249}\right )^{{1}/{3}}}{12}+\frac {2}{3}} \sin \left (\frac {\left (188+12 \sqrt {3}\, \sqrt {83}\right )^{{1}/{3}} \sqrt {3}\, \left (3 \sqrt {3}\, \sqrt {83}\, \left (188+12 \sqrt {3}\, \sqrt {83}\right )^{{1}/{3}}-47 \left (188+12 \sqrt {3}\, \sqrt {83}\right )^{{1}/{3}}+16\right ) \ln \left (x \right )}{192}\right )+x^{\frac {\left (-47+3 \sqrt {249}\right ) \left (188+12 \sqrt {249}\right )^{{2}/{3}}}{96}-\frac {\left (188+12 \sqrt {249}\right )^{{1}/{3}}}{6}+\frac {2}{3}} c_{1} +1 \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 82

DSolve[x^4*D[y[x],{x,3}]+x^3*D[y[x],{x,2}]+x^2*D[y[x],x]+x*y[x]== x,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 x^{\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+2 \text {$\#$1}+1\&,1\right ]}+c_3 x^{\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+2 \text {$\#$1}+1\&,3\right ]}+c_2 x^{\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+2 \text {$\#$1}+1\&,2\right ]}+1 \]