56.4.7 problem 7

Internal problem ID [8896]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 7
Date solved : Monday, January 27, 2025 at 05:18:48 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y&=x^{2}+1 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.012 (sec). Leaf size: 43

Order:=6; 
dsolve(2*x^2*diff(y(x), x$2) - x*diff(y(x), x) + (1-x^2 )*y(x) = 1+x^2,y(x),type='series',x=0);
 
\[ y = c_{1} \sqrt {x}\, \left (1+\frac {1}{6} x^{2}+\frac {1}{168} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} x \left (1+\frac {1}{10} x^{2}+\frac {1}{360} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\left (1+\frac {2}{3} x^{2}+\frac {2}{63} x^{4}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 176

AsymptoticDSolveValue[2*x^2*D[y[x],{x,2}] - x*D[y[x],x] + (1-x^2 )*y[x] ==1+x^2,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 x \left (\frac {x^6}{28080}+\frac {x^4}{360}+\frac {x^2}{10}+1\right )+c_1 \sqrt {x} \left (\frac {x^6}{11088}+\frac {x^4}{168}+\frac {x^2}{6}+1\right )+\sqrt {x} \left (-\frac {79 x^{11/2}}{154440}-\frac {37 x^{7/2}}{1260}-\frac {11 x^{3/2}}{15}+\frac {2}{\sqrt {x}}\right ) \left (\frac {x^6}{11088}+\frac {x^4}{168}+\frac {x^2}{6}+1\right )+x \left (\frac {67 x^5}{55440}+\frac {29 x^3}{504}+\frac {7 x}{6}-\frac {1}{x}\right ) \left (\frac {x^6}{28080}+\frac {x^4}{360}+\frac {x^2}{10}+1\right ) \]