56.4.10 problem 10

Internal problem ID [8899]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 10
Date solved : Monday, January 27, 2025 at 05:18:52 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y&=1+\sin \left (x \right ) \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Order:=6; 
dsolve(2*x^2*diff(y(x), x$2) - x*diff(y(x), x) + (1-x^2 )*y(x) = 1+sin(x),y(x),type='series',x=0);
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.101 (sec). Leaf size: 217

AsymptoticDSolveValue[2*x^2*D[y[x],{x,2}] - x*D[y[x],x] + (1-x^2 )*y[x] ==1+Sin[x],y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \sqrt {x} \left (\frac {x^6}{11088}+\frac {x^4}{168}+\frac {x^2}{6}+1\right )+c_2 x \left (\frac {x^6}{28080}+\frac {x^4}{360}+\frac {x^2}{10}+1\right )+\sqrt {x} \left (-\frac {x^{11/2}}{154440}+\frac {x^{9/2}}{810}-\frac {x^{7/2}}{1260}+\frac {2 x^{5/2}}{75}-\frac {x^{3/2}}{15}-2 \sqrt {x}+\frac {2}{\sqrt {x}}\right ) \left (\frac {x^6}{11088}+\frac {x^4}{168}+\frac {x^2}{6}+1\right )+x \left (\frac {x^6}{28080}+\frac {x^4}{360}+\frac {x^2}{10}+1\right ) \left (\frac {x^6}{20790}+\frac {x^5}{55440}-\frac {17 x^4}{5040}+\frac {x^3}{504}+\frac {x}{6}-\frac {1}{x}+\log (x)\right ) \]