56.4.21 problem 21

Internal problem ID [8910]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 21
Date solved : Monday, January 27, 2025 at 05:19:09 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\left (x -6\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 52

Order:=6; 
dsolve(diff(y(x), x, x) + (x-6)*y(x) = 0,y(x),type='series',x=0);
 
\[ y = \left (1+3 x^{2}-\frac {1}{6} x^{3}+\frac {3}{2} x^{4}-\frac {1}{5} x^{5}\right ) y \left (0\right )+\left (x +x^{3}-\frac {1}{12} x^{4}+\frac {3}{10} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 57

AsymptoticDSolveValue[D[y[x],{x,2}]+(x-6)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {3 x^5}{10}-\frac {x^4}{12}+x^3+x\right )+c_1 \left (-\frac {x^5}{5}+\frac {3 x^4}{2}-\frac {x^3}{6}+3 x^2+1\right ) \]