Internal
problem
ID
[8532]
Book
:
Elementary
differential
equations.
Rainville,
Bedient,
Bedient.
Prentice
Hall.
NJ.
8th
edition.
1997.
Section
:
CHAPTER
8.
Nonhomogeneous
Equations:
Undetermined
Coefficients.
Exercises
Page
142
Problem
number
:
4
Date
solved
:
Wednesday, March 05, 2025 at 06:02:48 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+3*diff(y(x),x)+2*y(x) = x^2+2*x+1; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+3*D[y[x],x]+2*y[x]==1+2*x+x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2 - 2*x + 2*y(x) + 3*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)