56.4.30 problem 26

Internal problem ID [8919]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 26
Date solved : Monday, January 27, 2025 at 05:19:22 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x^{2} \left (x +3\right ) y^{\prime \prime }+5 x \left (1+x \right ) y^{\prime }-\left (1-4 x \right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.015 (sec). Leaf size: 48

Order:=6; 
dsolve(x^2*(3+x)*diff(y(x), x$2) + 5*x*(1+x)*diff(y(x), x) - (1-4*x)*y(x) = 0,y(x),type='series',x=0);
 
\[ y = \frac {c_{2} x^{{4}/{3}} \left (1-\frac {7}{9} x +\frac {35}{81} x^{2}-\frac {455}{2187} x^{3}+\frac {1820}{19683} x^{4}-\frac {6916}{177147} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{1} \left (1+x -x^{2}+\frac {3}{5} x^{3}-\frac {3}{10} x^{4}+\frac {3}{22} x^{5}+\operatorname {O}\left (x^{6}\right )\right )}{x} \]

Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 82

AsymptoticDSolveValue[x^2*(3+x)*D[y[x],{x,2}] + 5*x*(1+x)*D[y[x],x] - (1-4*x)*y[x] == 0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \sqrt [3]{x} \left (-\frac {6916 x^5}{177147}+\frac {1820 x^4}{19683}-\frac {455 x^3}{2187}+\frac {35 x^2}{81}-\frac {7 x}{9}+1\right )+\frac {c_2 \left (\frac {3 x^5}{22}-\frac {3 x^4}{10}+\frac {3 x^3}{5}-x^2+x+1\right )}{x} \]