56.4.47 problem 44

Internal problem ID [8936]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 44
Date solved : Monday, January 27, 2025 at 05:20:21 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+2 x y^{\prime }-y x&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 44

Order:=6; 
dsolve(cos(x)*diff(y(x), x, x) + 2*x*diff(y(x), x) - x*y(x) = 0,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {1}{6} x^{3}-\frac {1}{40} x^{5}\right ) y \left (0\right )+\left (x -\frac {1}{3} x^{3}+\frac {1}{12} x^{4}+\frac {1}{20} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 49

AsymptoticDSolveValue[Cos[x]*D[y[x],{x,2}]+2*x*D[y[x],x]-x*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (-\frac {x^5}{40}+\frac {x^3}{6}+1\right )+c_2 \left (\frac {x^5}{20}+\frac {x^4}{12}-\frac {x^3}{3}+x\right ) \]