56.4.49 problem 46

Internal problem ID [8938]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 46
Date solved : Monday, January 27, 2025 at 05:20:24 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }-y x&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.013 (sec). Leaf size: 44

Order:=6; 
dsolve(x^2*diff(y(x), x, x) + x*diff(y(x), x) - x*y(x) = 0,y(x),type='series',x=0);
 
\[ y = \left (c_{2} \ln \left (x \right )+c_{1} \right ) \left (1+x +\frac {1}{4} x^{2}+\frac {1}{36} x^{3}+\frac {1}{576} x^{4}+\frac {1}{14400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (\left (-2\right ) x -\frac {3}{4} x^{2}-\frac {11}{108} x^{3}-\frac {25}{3456} x^{4}-\frac {137}{432000} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_{2} \]

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 107

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]+x*D[y[x],x]-x*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^5}{14400}+\frac {x^4}{576}+\frac {x^3}{36}+\frac {x^2}{4}+x+1\right )+c_2 \left (-\frac {137 x^5}{432000}-\frac {25 x^4}{3456}-\frac {11 x^3}{108}-\frac {3 x^2}{4}+\left (\frac {x^5}{14400}+\frac {x^4}{576}+\frac {x^3}{36}+\frac {x^2}{4}+x+1\right ) \log (x)-2 x\right ) \]