56.4.55 problem 52

Internal problem ID [8944]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 52
Date solved : Monday, January 27, 2025 at 05:20:33 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-x y^{\prime }-\left (x^{2}+\frac {5}{4}\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

Order:=6; 
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)-(x^2+5/4)*y(x) = 0,y(x),type='series',x=0);
 
\[ y = \frac {c_{1} x^{3} \left (1+\frac {1}{10} x^{2}+\frac {1}{280} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (12-6 x^{2}-\frac {3}{2} x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{\sqrt {x}} \]

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 58

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]-x*D[y[x],x]-(x^2+5/4)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (-\frac {x^{7/2}}{8}-\frac {x^{3/2}}{2}+\frac {1}{\sqrt {x}}\right )+c_2 \left (\frac {x^{13/2}}{280}+\frac {x^{9/2}}{10}+x^{5/2}\right ) \]