56.4.57 problem 54

Internal problem ID [8946]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 54
Date solved : Monday, January 27, 2025 at 05:20:35 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.015 (sec). Leaf size: 44

Order:=6; 
dsolve(x*diff(y(x),x$2)+(2-x)*diff(y(x),x)-y(x) = 0,y(x),type='series',x=0);
 
\[ y = c_{1} \left (1+\frac {1}{2} x +\frac {1}{6} x^{2}+\frac {1}{24} x^{3}+\frac {1}{120} x^{4}+\frac {1}{720} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_{2} \left (1+x +\frac {1}{2} x^{2}+\frac {1}{6} x^{3}+\frac {1}{24} x^{4}+\frac {1}{120} x^{5}+\operatorname {O}\left (x^{6}\right )\right )}{x} \]

Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 62

AsymptoticDSolveValue[x*D[y[x],{x,2}]+(2-x)*D[y[x],x]-y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^3}{24}+\frac {x^2}{6}+\frac {x}{2}+\frac {1}{x}+1\right )+c_2 \left (\frac {x^4}{120}+\frac {x^3}{24}+\frac {x^2}{6}+\frac {x}{2}+1\right ) \]