Internal
problem
ID
[8584]
Book
:
Elementary
differential
equations.
Rainville,
Bedient,
Bedient.
Prentice
Hall.
NJ.
8th
edition.
1997.
Section
:
CHAPTER
17.
Power
series
solutions.
17.5.
Solutions
Near
an
Ordinary
Point.
Exercises
page
355
Problem
number
:
28
Date
solved
:
Wednesday, March 05, 2025 at 06:10:01 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=8; ode:=(x^2-2*x+2)*diff(diff(y(x),x),x)-4*(x-1)*diff(y(x),x)+6*y(x) = 0; dsolve(ode,y(x),type='series',x=1);
ode=(x^2-2*x+2)*D[y[x],{x,2}]-4*(x-1)*D[y[x],x]+6*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,1,7}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((4 - 4*x)*Derivative(y(x), x) + (x**2 - 2*x + 2)*Derivative(y(x), (x, 2)) + 6*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=1,n=8)