54.4.30 problem 33

Internal problem ID [8614]
Book : Elementary differential equations. Rainville, Bedient, Bedient. Prentice Hall. NJ. 8th edition. 1997.
Section : CHAPTER 18. Power series solutions. 18.4 Indicial Equation with Difference of Roots Nonintegral. Exercises page 365
Problem number : 33
Date solved : Wednesday, March 05, 2025 at 06:10:39 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }+5 x y^{\prime }+5 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=x^2*diff(diff(y(x),x),x)+5*x*diff(y(x),x)+5*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_{1} \sin \left (\ln \left (x \right )\right )+c_{2} \cos \left (\ln \left (x \right )\right )}{x^{2}} \]
Mathematica. Time used: 0.027 (sec). Leaf size: 22
ode=x^2*D[y[x],{x,2}]+5*x*D[y[x],x]+5*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_2 \cos (\log (x))+c_1 \sin (\log (x))}{x^2} \]
Sympy. Time used: 0.178 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + 5*x*Derivative(y(x), x) + 5*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} \sin {\left (\log {\left (x \right )} \right )} + C_{2} \cos {\left (\log {\left (x \right )} \right )}}{x^{2}} \]