57.1.19 problem 19

Internal problem ID [9003]
Book : First order enumerated odes
Section : section 1
Problem number : 19
Date solved : Monday, January 27, 2025 at 05:26:51 PM
CAS classification : [[_Riccati, _special]]

\begin{align*} c y^{\prime }&=a x +b y^{2} \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 75

dsolve(c*diff(y(x),x)=a*x+b*y(x)^2,y(x), singsol=all)
 
\[ y = \frac {\left (\frac {b a}{c^{2}}\right )^{{1}/{3}} \left (\operatorname {AiryAi}\left (1, -\left (\frac {b a}{c^{2}}\right )^{{1}/{3}} x \right ) c_{1} +\operatorname {AiryBi}\left (1, -\left (\frac {b a}{c^{2}}\right )^{{1}/{3}} x \right )\right ) c}{b \left (c_{1} \operatorname {AiryAi}\left (-\left (\frac {b a}{c^{2}}\right )^{{1}/{3}} x \right )+\operatorname {AiryBi}\left (-\left (\frac {b a}{c^{2}}\right )^{{1}/{3}} x \right )\right )} \]

Solution by Mathematica

Time used: 0.192 (sec). Leaf size: 437

DSolve[c*D[y[x],x]==a*x+b*y[x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {c \left (x^{3/2} \sqrt {\frac {a}{c}} \sqrt {\frac {b}{c}} \left (-2 \operatorname {BesselJ}\left (-\frac {2}{3},\frac {2}{3} \sqrt {\frac {a}{c}} \sqrt {\frac {b}{c}} x^{3/2}\right )+c_1 \left (\operatorname {BesselJ}\left (\frac {2}{3},\frac {2}{3} \sqrt {\frac {a}{c}} \sqrt {\frac {b}{c}} x^{3/2}\right )-\operatorname {BesselJ}\left (-\frac {4}{3},\frac {2}{3} \sqrt {\frac {a}{c}} \sqrt {\frac {b}{c}} x^{3/2}\right )\right )\right )-c_1 \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} \sqrt {\frac {a}{c}} \sqrt {\frac {b}{c}} x^{3/2}\right )\right )}{2 b x \left (\operatorname {BesselJ}\left (\frac {1}{3},\frac {2}{3} \sqrt {\frac {a}{c}} \sqrt {\frac {b}{c}} x^{3/2}\right )+c_1 \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} \sqrt {\frac {a}{c}} \sqrt {\frac {b}{c}} x^{3/2}\right )\right )} \\ y(x)\to -\frac {c \left (x^{3/2} \sqrt {\frac {a}{c}} \sqrt {\frac {b}{c}} \operatorname {BesselJ}\left (-\frac {4}{3},\frac {2}{3} \sqrt {\frac {a}{c}} \sqrt {\frac {b}{c}} x^{3/2}\right )-x^{3/2} \sqrt {\frac {a}{c}} \sqrt {\frac {b}{c}} \operatorname {BesselJ}\left (\frac {2}{3},\frac {2}{3} \sqrt {\frac {a}{c}} \sqrt {\frac {b}{c}} x^{3/2}\right )+\operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} \sqrt {\frac {a}{c}} \sqrt {\frac {b}{c}} x^{3/2}\right )\right )}{2 b x \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} \sqrt {\frac {a}{c}} \sqrt {\frac {b}{c}} x^{3/2}\right )} \\ \end{align*}