7.10.51 problem 58

Internal problem ID [321]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.3 (Homogeneous equations with constant coefficients). Problems at page 134
Problem number : 58
Date solved : Monday, January 27, 2025 at 02:43:36 AM
CAS classification : [[_3rd_order, _exact, _linear, _homogeneous]]

\begin{align*} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y&=0 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 20

dsolve(x^3*diff(y(x),x$3)+6*x^2*diff(y(x),x$2)+7*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)
 
\[ y = \frac {c_3 \ln \left (x \right )^{2}+c_2 \ln \left (x \right )+c_1}{x} \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 24

DSolve[x^3*D[y[x],{x,3}]+6*x^2*D[y[x],{x,2}]+7*x*D[y[x],x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {c_3 \log ^2(x)+c_2 \log (x)+c_1}{x} \]