Internal
problem
ID
[9038]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
54
Date
solved
:
Monday, January 27, 2025 at 05:27:48 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
Time used: 0.092 (sec). Leaf size: 341
\begin{align*}
y &= 0 \\
y &= -\frac {3 x^{{4}/{3}} c_{1}}{8}+\frac {3 x^{{2}/{3}} c_{1}^{2}}{8}-\frac {c_{1}^{3}}{8}+\frac {x^{2}}{8} \\
y &= \frac {3 \left (-i \sqrt {3}-1\right ) c_{1}^{2} x^{{2}/{3}}}{16}+\frac {3 c_{1} \left (1-i \sqrt {3}\right ) x^{{4}/{3}}}{16}-\frac {c_{1}^{3}}{8}+\frac {x^{2}}{8} \\
y &= \frac {3 \left (i \sqrt {3}-1\right ) c_{1}^{2} x^{{2}/{3}}}{16}+\frac {3 c_{1} \left (1+i \sqrt {3}\right ) x^{{4}/{3}}}{16}-\frac {c_{1}^{3}}{8}+\frac {x^{2}}{8} \\
y &= \frac {3 x^{{4}/{3}} c_{1}}{16}+\frac {3 x^{{2}/{3}} c_{1}^{2}}{32}+\frac {c_{1}^{3}}{64}+\frac {x^{2}}{8} \\
y &= \frac {3 \left (-i \sqrt {3}-1\right ) c_{1}^{2} x^{{2}/{3}}}{64}+\frac {3 \left (i \sqrt {3}-1\right ) c_{1} x^{{4}/{3}}}{32}+\frac {c_{1}^{3}}{64}+\frac {x^{2}}{8} \\
y &= \frac {3 \left (i \sqrt {3}-1\right ) c_{1}^{2} x^{{2}/{3}}}{64}+\frac {3 c_{1} \left (-i \sqrt {3}-1\right ) x^{{4}/{3}}}{32}+\frac {c_{1}^{3}}{64}+\frac {x^{2}}{8} \\
y &= -\frac {3 x^{{4}/{3}} c_{1}}{16}+\frac {3 x^{{2}/{3}} c_{1}^{2}}{32}-\frac {c_{1}^{3}}{64}+\frac {x^{2}}{8} \\
y &= \frac {3 \left (-i \sqrt {3}-1\right ) c_{1}^{2} x^{{2}/{3}}}{64}+\frac {3 c_{1} \left (1-i \sqrt {3}\right ) x^{{4}/{3}}}{32}-\frac {c_{1}^{3}}{64}+\frac {x^{2}}{8} \\
y &= \frac {3 \left (i \sqrt {3}-1\right ) c_{1}^{2} x^{{2}/{3}}}{64}+\frac {3 c_{1} \left (1+i \sqrt {3}\right ) x^{{4}/{3}}}{32}-\frac {c_{1}^{3}}{64}+\frac {x^{2}}{8} \\
\end{align*}
Time used: 0.088 (sec). Leaf size: 152
\begin{align*}
y(x)\to \frac {1}{216} \left (3 x^{2/3}+2 c_1\right ){}^3 \\
y(x)\to \frac {1}{216} \left (18 i \left (\sqrt {3}+i\right ) c_1{}^2 x^{2/3}-27 i \left (\sqrt {3}-i\right ) c_1 x^{4/3}+27 x^2+8 c_1{}^3\right ) \\
y(x)\to \frac {1}{216} \left (-18 i \left (\sqrt {3}-i\right ) c_1{}^2 x^{2/3}+27 i \left (\sqrt {3}+i\right ) c_1 x^{4/3}+27 x^2+8 c_1{}^3\right ) \\
y(x)\to 0 \\
\end{align*}