Internal
problem
ID
[8690]
Book
:
Elementary
differential
equations.
Rainville,
Bedient,
Bedient.
Prentice
Hall.
NJ.
8th
edition.
1997.
Section
:
CHAPTER
18.
Power
series
solutions.
Miscellaneous
Exercises.
page
394
Problem
number
:
21
Date
solved
:
Wednesday, March 05, 2025 at 06:12:30 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=8; ode:=4*x^2*diff(diff(y(x),x),x)+2*x^2*diff(y(x),x)-(x+3)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=4*x^2*D[y[x],{x,2}]+2*x^2*D[y[x],x]-(x+3)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*Derivative(y(x), x) + 4*x**2*Derivative(y(x), (x, 2)) - (x + 3)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=8)