58.1.12 problem 12

Internal problem ID [9083]
Book : Second order enumerated odes
Section : section 1
Problem number : 12
Date solved : Monday, January 27, 2025 at 05:32:15 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 12

dsolve(diff(y(x),x$2)+diff(y(x),x)=0,y(x), singsol=all)
 
\[ y = c_{1} +c_{2} {\mathrm e}^{-x} \]

Solution by Mathematica

Time used: 0.010 (sec). Leaf size: 17

DSolve[D[y[x],{x,2}]+D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_2-c_1 e^{-x} \]