58.1.15 problem 15

Internal problem ID [9086]
Book : Second order enumerated odes
Section : section 1
Problem number : 15
Date solved : Monday, January 27, 2025 at 05:32:21 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y^{\prime }&=1 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 14

dsolve(diff(y(x),x$2)+diff(y(x),x)=1,y(x), singsol=all)
 
\[ y = -c_{1} {\mathrm e}^{-x}+x +c_{2} \]

Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 18

DSolve[D[y[x],{x,2}]+D[y[x],x]==1,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to x-c_1 e^{-x}+c_2 \]