58.1.19 problem 19

Internal problem ID [9090]
Book : Second order enumerated odes
Section : section 1
Problem number : 19
Date solved : Monday, January 27, 2025 at 05:37:15 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} {y^{\prime \prime }}^{2}+y^{\prime }&=x \end{align*}

Solution by Maple

Time used: 0.063 (sec). Leaf size: 122

dsolve(diff(y(x),x$2)^2+diff(y(x),x)=x,y(x), singsol=all)
 
\begin{align*} y &= \int \left (-{\mathrm e}^{2 \operatorname {RootOf}\left (\textit {\_Z} -x -2 \,{\mathrm e}^{\textit {\_Z}}+2+c_{1} -\ln \left ({\mathrm e}^{\textit {\_Z}} \left ({\mathrm e}^{\textit {\_Z}}-2\right )^{2}\right )\right )}+2 \,{\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z} -x -2 \,{\mathrm e}^{\textit {\_Z}}+2+c_{1} -\ln \left ({\mathrm e}^{\textit {\_Z}} \left ({\mathrm e}^{\textit {\_Z}}-2\right )^{2}\right )\right )}+x \right )d x -x +c_{2} \\ y &= \frac {2 \operatorname {LambertW}\left (-c_{1} {\mathrm e}^{-\frac {x}{2}-1}\right )^{3}}{3}+3 \operatorname {LambertW}\left (-c_{1} {\mathrm e}^{-\frac {x}{2}-1}\right )^{2}+4 \operatorname {LambertW}\left (-c_{1} {\mathrm e}^{-\frac {x}{2}-1}\right )+\frac {x^{2}}{2}-x +c_{2} \\ \end{align*}

Solution by Mathematica

Time used: 17.332 (sec). Leaf size: 172

DSolve[(D[y[x],{x,2}])^2+D[y[x],x]==x,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {2}{3} W\left (e^{-\frac {x}{2}-1-\frac {c_1}{2}}\right ){}^3+3 W\left (e^{-\frac {x}{2}-1-\frac {c_1}{2}}\right ){}^2+4 W\left (e^{-\frac {x}{2}-1-\frac {c_1}{2}}\right )+\frac {x^2}{2}-x+c_2 \\ y(x)\to \frac {2}{3} W\left (-e^{\frac {1}{2} (-x-2+c_1)}\right ){}^3+3 W\left (-e^{\frac {1}{2} (-x-2+c_1)}\right ){}^2+4 W\left (-e^{\frac {1}{2} (-x-2+c_1)}\right )+\frac {x^2}{2}-x+c_2 \\ y(x)\to \frac {x^2}{2}-x+c_2 \\ \end{align*}