58.1.29 problem 29

Internal problem ID [9100]
Book : Second order enumerated odes
Section : section 1
Problem number : 29
Date solved : Monday, January 27, 2025 at 05:39:46 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 35

dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=sin(x),y(x), singsol=all)
 
\[ y = c_{2} {\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right )+{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) c_{1} -\cos \left (x \right ) \]

Solution by Mathematica

Time used: 0.309 (sec). Leaf size: 53

DSolve[D[y[x],{x,2}]+D[y[x],x]+y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{-x/2} \left (-e^{x/2} \cos (x)+c_2 \cos \left (\frac {\sqrt {3} x}{2}\right )+c_1 \sin \left (\frac {\sqrt {3} x}{2}\right )\right ) \]