58.1.46 problem 46

Internal problem ID [9117]
Book : Second order enumerated odes
Section : section 1
Problem number : 46
Date solved : Monday, January 27, 2025 at 05:42:41 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3}&=0 \end{align*}

Solution by Maple

Time used: 0.161 (sec). Leaf size: 166

dsolve(y(x)*diff(y(x),x$2)^2+diff(y(x),x)^3=0,y(x), singsol=all)
 
\begin{align*} y &= c_{1} \\ y &= 0 \\ y &= \frac {c_{2} {\left (\operatorname {LambertW}\left (c_{1} {\mathrm e}^{\frac {x}{2}-1}\right )+1\right )}^{2}}{\operatorname {LambertW}\left (c_{1} {\mathrm e}^{\frac {x}{2}-1}\right )^{2}} \\ y &= \frac {c_{2} {\left (\operatorname {LambertW}\left (-c_{1} {\mathrm e}^{\frac {x}{2}-1}\right )+1\right )}^{2}}{\operatorname {LambertW}\left (-c_{1} {\mathrm e}^{\frac {x}{2}-1}\right )^{2}} \\ y &= {\mathrm e}^{-\int {\mathrm e}^{2 \operatorname {RootOf}\left ({\mathrm e}^{\textit {\_Z}} \ln \left (\left ({\mathrm e}^{\textit {\_Z}}+1\right )^{2}\right )+c_{1} {\mathrm e}^{\textit {\_Z}}-2 \textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+x \,{\mathrm e}^{\textit {\_Z}}+\ln \left (\left ({\mathrm e}^{\textit {\_Z}}+1\right )^{2}\right )+c_{1} -2 \textit {\_Z} +x -2\right )}d x -2 \left (\int {\mathrm e}^{\operatorname {RootOf}\left ({\mathrm e}^{\textit {\_Z}} \ln \left (\left ({\mathrm e}^{\textit {\_Z}}+1\right )^{2}\right )+c_{1} {\mathrm e}^{\textit {\_Z}}-2 \textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+x \,{\mathrm e}^{\textit {\_Z}}+\ln \left (\left ({\mathrm e}^{\textit {\_Z}}+1\right )^{2}\right )+c_{1} -2 \textit {\_Z} +x -2\right )}d x \right )-x +c_{2}} \\ \end{align*}

Solution by Mathematica

Time used: 1.974 (sec). Leaf size: 361

DSolve[y[x]*D[y[x],{x,2}]^2+D[y[x],x]^3==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [-4 \left (\frac {1}{2} \log \left (2 \sqrt {\text {$\#$1}}-i c_1\right )-\frac {i c_1}{2 \left (2 \sqrt {\text {$\#$1}}-i c_1\right )}\right )\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-4 \left (\frac {i c_1}{2 \left (2 \sqrt {\text {$\#$1}}+i c_1\right )}+\frac {1}{2} \log \left (2 \sqrt {\text {$\#$1}}+i c_1\right )\right )\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-4 \left (\frac {1}{2} \log \left (2 \sqrt {\text {$\#$1}}-i (-c_1)\right )-\frac {i (-c_1)}{2 \left (2 \sqrt {\text {$\#$1}}-i (-c_1)\right )}\right )\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-4 \left (\frac {i (-c_1)}{2 \left (2 \sqrt {\text {$\#$1}}+i (-1) c_1\right )}+\frac {1}{2} \log \left (2 \sqrt {\text {$\#$1}}+i (-1) c_1\right )\right )\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-4 \left (\frac {1}{2} \log \left (2 \sqrt {\text {$\#$1}}-i c_1\right )-\frac {i c_1}{2 \left (2 \sqrt {\text {$\#$1}}-i c_1\right )}\right )\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-4 \left (\frac {i c_1}{2 \left (2 \sqrt {\text {$\#$1}}+i c_1\right )}+\frac {1}{2} \log \left (2 \sqrt {\text {$\#$1}}+i c_1\right )\right )\&\right ][x+c_2] \\ \end{align*}