56.1.23 problem 24

Internal problem ID [8735]
Book : Own collection of miscellaneous problems
Section : section 1.0
Problem number : 24
Date solved : Wednesday, March 05, 2025 at 06:43:25 AM
CAS classification : [_separable]

\begin{align*} y&=x y^{\prime }+x^{2} {y^{\prime }}^{2} \end{align*}

Maple. Time used: 0.031 (sec). Leaf size: 97
ode:=y(x) = x*diff(y(x),x)+x^2*diff(y(x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \ln \left (x \right )-\sqrt {4 y+1}-\frac {\ln \left (-1+\sqrt {4 y+1}\right )}{2}+\frac {\ln \left (1+\sqrt {4 y+1}\right )}{2}-\frac {\ln \left (y\right )}{2}-c_{1} &= 0 \\ \ln \left (x \right )+\sqrt {4 y+1}+\frac {\ln \left (-1+\sqrt {4 y+1}\right )}{2}-\frac {\ln \left (1+\sqrt {4 y+1}\right )}{2}-\frac {\ln \left (y\right )}{2}-c_{1} &= 0 \\ \end{align*}
Mathematica. Time used: 19.224 (sec). Leaf size: 72
ode=y[x]==x*D[y[x],x]+x^2*(D[y[x],x])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{4} W\left (-e^{-1-2 c_1} x\right ) \left (2+W\left (-e^{-1-2 c_1} x\right )\right ) \\ y(x)\to \frac {1}{4} W\left (e^{-1+2 c_1} x\right ) \left (2+W\left (e^{-1+2 c_1} x\right )\right ) \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.706 (sec). Leaf size: 65
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*Derivative(y(x), x)**2 - x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \frac {\sqrt {4 y{\left (x \right )} + 1}}{2} + \frac {\log {\left (x \right )}}{2} - \frac {\log {\left (\sqrt {4 y{\left (x \right )} + 1} + 1 \right )}}{2} = C_{1}, \ - \frac {\sqrt {4 y{\left (x \right )} + 1}}{2} + \frac {\log {\left (x \right )}}{2} - \frac {\log {\left (\sqrt {4 y{\left (x \right )} + 1} - 1 \right )}}{2} = C_{1}\right ] \]