58.1.49 problem 49

Internal problem ID [9120]
Book : Second order enumerated odes
Section : section 1
Problem number : 49
Date solved : Monday, January 27, 2025 at 05:43:51 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{3} {y^{\prime \prime }}^{2}+y^{\prime } y&=0 \end{align*}

Solution by Maple

Time used: 0.102 (sec). Leaf size: 233

dsolve(y(x)^3*diff(y(x),x$2)^2+y(x)*diff(y(x),x)=0,y(x), singsol=all)
 
\begin{align*} y &= c_{1} \\ y &= 0 \\ -4 \left (\int _{}^{y}\frac {1}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_{1} \right )^{{2}/{3}}}d \textit {\_a} \right )-x -c_{2} &= 0 \\ -4 \left (\int _{}^{y}\frac {1}{\left (12 \ln \left (\textit {\_a} \right )-8 c_{1} \right )^{{2}/{3}}}d \textit {\_a} \right )-x -c_{2} &= 0 \\ \frac {-16 \left (\int _{}^{y}\frac {1}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_{1} \right )^{{2}/{3}}}d \textit {\_a} \right )+2 i \left (-x -c_{2} \right ) \sqrt {3}+2 x +2 c_{2}}{\left (-i \sqrt {3}-1\right )^{2}} &= 0 \\ \frac {-16 \left (\int _{}^{y}\frac {1}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_{1} \right )^{{2}/{3}}}d \textit {\_a} \right )+2 i \left (x +c_{2} \right ) \sqrt {3}+2 x +2 c_{2}}{\left (1-i \sqrt {3}\right )^{2}} &= 0 \\ \frac {-16 \left (\int _{}^{y}\frac {1}{\left (12 \ln \left (\textit {\_a} \right )-8 c_{1} \right )^{{2}/{3}}}d \textit {\_a} \right )+2 i \left (-x -c_{2} \right ) \sqrt {3}+2 x +2 c_{2}}{\left (-i \sqrt {3}-1\right )^{2}} &= 0 \\ \frac {-16 \left (\int _{}^{y}\frac {1}{\left (12 \ln \left (\textit {\_a} \right )-8 c_{1} \right )^{{2}/{3}}}d \textit {\_a} \right )+2 i \left (x +c_{2} \right ) \sqrt {3}+2 x +2 c_{2}}{\left (1-i \sqrt {3}\right )^{2}} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 2.307 (sec). Leaf size: 459

DSolve[y[x]^3*D[y[x],{x,2}]^2+y[x]*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to 0 \\ y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{-i c_1} (-\log (\text {$\#$1})-i c_1){}^{2/3} \Gamma \left (\frac {1}{3},-i c_1-\log (\text {$\#$1})\right )}{(c_1-i \log (\text {$\#$1})){}^{2/3}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{i c_1} (-\log (\text {$\#$1})+i c_1){}^{2/3} \Gamma \left (\frac {1}{3},i c_1-\log (\text {$\#$1})\right )}{(i \log (\text {$\#$1})+c_1){}^{2/3}}\&\right ][x+c_2] \\ y(x)\to 0 \\ y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{-i (-c_1)} (-\log (\text {$\#$1})-i (-1) c_1){}^{2/3} \Gamma \left (\frac {1}{3},-i (-1) c_1-\log (\text {$\#$1})\right )}{(-i \log (\text {$\#$1})-c_1){}^{2/3}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{-i c_1} (-\log (\text {$\#$1})-i c_1){}^{2/3} \Gamma \left (\frac {1}{3},-i c_1-\log (\text {$\#$1})\right )}{(c_1-i \log (\text {$\#$1})){}^{2/3}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{i (-c_1)} (-\log (\text {$\#$1})+i (-c_1)){}^{2/3} \Gamma \left (\frac {1}{3},i (-c_1)-\log (\text {$\#$1})\right )}{(i \log (\text {$\#$1})-c_1){}^{2/3}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{i c_1} (-\log (\text {$\#$1})+i c_1){}^{2/3} \Gamma \left (\frac {1}{3},i c_1-\log (\text {$\#$1})\right )}{(i \log (\text {$\#$1})+c_1){}^{2/3}}\&\right ][x+c_2] \\ \end{align*}