58.2.3 problem 3

Internal problem ID [9126]
Book : Second order enumerated odes
Section : section 2
Problem number : 3
Date solved : Tuesday, January 28, 2025 at 04:00:07 PM
CAS classification : [_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2}&=0 \end{align*}

Solution by Maple

Time used: 0.010 (sec). Leaf size: 61

dsolve(diff(y(x),x$2)+(1-x)*diff(y(x),x)+y(x)^2*diff(y(x),x)^2=0,y(x), singsol=all)
 
\[ c_{1} \operatorname {erf}\left (\frac {i \sqrt {2}\, \left (x -1\right )}{2}\right )-c_{2} +\frac {2 \,3^{{5}/{6}} y \pi }{9 \Gamma \left (\frac {2}{3}\right ) \left (-y^{3}\right )^{{1}/{3}}}-\frac {y \Gamma \left (\frac {1}{3}, -\frac {y^{3}}{3}\right ) 3^{{1}/{3}}}{3 \left (-y^{3}\right )^{{1}/{3}}} = 0 \]

Solution by Mathematica

Time used: 16.947 (sec). Leaf size: 64

DSolve[D[y[x],{x,2}]+(1-x)*D[y[x],x]+y[x]^2*(D[y[x],x])^2==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \text {InverseFunction}\left [-\frac {\text {$\#$1} \Gamma \left (\frac {1}{3},-\frac {\text {$\#$1}^3}{3}\right )}{3^{2/3} \sqrt [3]{-\text {$\#$1}^3}}\&\right ]\left [\int _1^x-e^{\frac {1}{2} (K[2]-2) K[2]} c_1dK[2]+c_2\right ] \]