58.2.6 problem 6
Internal
problem
ID
[9129]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
6
Date
solved
:
Monday, January 27, 2025 at 05:45:51 PM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
\begin{align*} y^{\prime \prime } y^{\prime }+y^{n}&=0 \end{align*}
✓ Solution by Maple
Time used: 0.028 (sec). Leaf size: 169
dsolve(diff(y(x),x$2)*diff(y(x),x)+y(x)^n=0,y(x), singsol=all)
\begin{align*}
\frac {\left (-2 n -2\right ) \left (\int _{}^{y}\frac {1}{{\left (-\left (3 \textit {\_a}^{n +1}-c_{1} \right ) \left (n +1\right )^{2}\right )}^{{1}/{3}}}d \textit {\_a} \right )-\left (1+i \sqrt {3}\right ) \left (x +c_{2} \right )}{1+i \sqrt {3}} &= 0 \\
-\frac {2 i \left (n +1\right ) \left (\int _{}^{y}\frac {1}{{\left (-\left (3 \textit {\_a}^{n +1}-c_{1} \right ) \left (n +1\right )^{2}\right )}^{{1}/{3}}}d \textit {\_a} \right )+\left (x +c_{2} \right ) \left (\sqrt {3}+i\right )}{\sqrt {3}+i} &= 0 \\
\left (\int _{}^{y}\frac {1}{{\left (-\left (3 \textit {\_a}^{n +1}-c_{1} \right ) \left (n +1\right )^{2}\right )}^{{1}/{3}}}d \textit {\_a} \right ) n +\int _{}^{y}\frac {1}{{\left (-\left (3 \textit {\_a}^{n +1}-c_{1} \right ) \left (n +1\right )^{2}\right )}^{{1}/{3}}}d \textit {\_a} -c_{2} -x &= 0 \\
\end{align*}
✓ Solution by Mathematica
Time used: 2.216 (sec). Leaf size: 910
DSolve[D[y[x],{x,2}]*D[y[x],x]+y[x]^n==0,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \sqrt [3]{n+1} \sqrt [3]{1-\frac {\text {$\#$1}^{n+1}}{c_1 (n+1)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{n+1},1+\frac {1}{n+1},\frac {\text {$\#$1}^{n+1}}{(n+1) c_1}\right )}{\sqrt [3]{-3 \text {$\#$1}^{n+1}+3 c_1 (n+1)}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {(-1)^{2/3} \text {$\#$1} \sqrt [3]{n+1} \sqrt [3]{1-\frac {\text {$\#$1}^{n+1}}{c_1 (n+1)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{n+1},1+\frac {1}{n+1},\frac {\text {$\#$1}^{n+1}}{(n+1) c_1}\right )}{\sqrt [3]{-3 \text {$\#$1}^{n+1}+3 c_1 (n+1)}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [-\frac {\sqrt [3]{-\frac {1}{3}} \text {$\#$1} \sqrt [3]{n+1} \sqrt [3]{1-\frac {\text {$\#$1}^{n+1}}{c_1 (n+1)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{n+1},1+\frac {1}{n+1},\frac {\text {$\#$1}^{n+1}}{(n+1) c_1}\right )}{\sqrt [3]{-\text {$\#$1}^{n+1}+c_1 (n+1)}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \sqrt [3]{n+1} \sqrt [3]{1-\frac {\text {$\#$1}^{n+1}}{(-c_1) (n+1)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{n+1},1+\frac {1}{n+1},\frac {\text {$\#$1}^{n+1}}{(n+1) (-c_1)}\right )}{\sqrt [3]{-3 \text {$\#$1}^{n+1}+3 (-c_1) (n+1)}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {(-1)^{2/3} \text {$\#$1} \sqrt [3]{n+1} \sqrt [3]{1-\frac {\text {$\#$1}^{n+1}}{(-c_1) (n+1)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{n+1},1+\frac {1}{n+1},\frac {\text {$\#$1}^{n+1}}{(n+1) (-c_1)}\right )}{\sqrt [3]{-3 \text {$\#$1}^{n+1}+3 (-c_1) (n+1)}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [-\frac {\sqrt [3]{-\frac {1}{3}} \text {$\#$1} \sqrt [3]{n+1} \sqrt [3]{1-\frac {\text {$\#$1}^{n+1}}{(-c_1) (n+1)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{n+1},1+\frac {1}{n+1},\frac {\text {$\#$1}^{n+1}}{(n+1) (-c_1)}\right )}{\sqrt [3]{-\text {$\#$1}^{n+1}+(-c_1) (n+1)}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \sqrt [3]{n+1} \sqrt [3]{1-\frac {\text {$\#$1}^{n+1}}{c_1 (n+1)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{n+1},1+\frac {1}{n+1},\frac {\text {$\#$1}^{n+1}}{(n+1) c_1}\right )}{\sqrt [3]{-3 \text {$\#$1}^{n+1}+3 c_1 (n+1)}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {(-1)^{2/3} \text {$\#$1} \sqrt [3]{n+1} \sqrt [3]{1-\frac {\text {$\#$1}^{n+1}}{c_1 (n+1)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{n+1},1+\frac {1}{n+1},\frac {\text {$\#$1}^{n+1}}{(n+1) c_1}\right )}{\sqrt [3]{-3 \text {$\#$1}^{n+1}+3 c_1 (n+1)}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [-\frac {\sqrt [3]{-\frac {1}{3}} \text {$\#$1} \sqrt [3]{n+1} \sqrt [3]{1-\frac {\text {$\#$1}^{n+1}}{c_1 (n+1)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{n+1},1+\frac {1}{n+1},\frac {\text {$\#$1}^{n+1}}{(n+1) c_1}\right )}{\sqrt [3]{-\text {$\#$1}^{n+1}+c_1 (n+1)}}\&\right ][x+c_2] \\
\end{align*}