58.2.32 problem 32

Internal problem ID [9155]
Book : Second order enumerated odes
Section : section 2
Problem number : 32
Date solved : Monday, January 27, 2025 at 05:50:57 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y&={\mathrm e}^{x^{2}} \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 27

dsolve(diff(y(x),x$2)-4*x*diff(y(x),x)+(4*x^2-3)*y(x)=exp(x^2),y(x), singsol=all)
 
\[ y = {\mathrm e}^{x \left (x +1\right )} c_{2} +{\mathrm e}^{\left (x -1\right ) x} c_{1} -{\mathrm e}^{x^{2}} \]

Solution by Mathematica

Time used: 0.040 (sec). Leaf size: 34

DSolve[D[y[x],{x,2}]-4*x*D[y[x],x]+(4*x^2-3)*y[x]==Exp[x^2],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {1}{2} e^{(x-1) x} \left (-2 e^x+c_2 e^{2 x}+2 c_1\right ) \]