58.2.35 problem 35

Internal problem ID [9158]
Book : Second order enumerated odes
Section : section 2
Problem number : 35
Date solved : Monday, January 27, 2025 at 05:51:21 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 33

dsolve(4*x^2*diff(y(x),x$2)+4*x^5*diff(y(x),x)+(x^8+6*x^4+4)*y(x)=0,y(x), singsol=all)
 
\[ y = \sqrt {x}\, {\mathrm e}^{-\frac {x^{4}}{8}} \left (c_{1} x^{\frac {i \sqrt {3}}{2}}+c_{2} x^{-\frac {i \sqrt {3}}{2}}\right ) \]

Solution by Mathematica

Time used: 0.073 (sec). Leaf size: 62

DSolve[4*x^2*D[y[x],{x,2}]+4*x^5*D[y[x],x]+(x^8+6*x^4+4)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {1}{3} e^{-\frac {x^4}{8}} x^{\frac {1}{2}-\frac {i \sqrt {3}}{2}} \left (3 c_1-i \sqrt {3} c_2 x^{i \sqrt {3}}\right ) \]