58.2.40 problem 40

Internal problem ID [9163]
Book : Second order enumerated odes
Section : section 2
Problem number : 40
Date solved : Monday, January 27, 2025 at 05:51:29 PM
CAS classification : [_rational]

\begin{align*} 2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.038 (sec). Leaf size: 28

dsolve((2*x*y(x)^2-y(x))+(y(x)^2+x+y(x))*diff(y(x),x)=0,y(x), singsol=all)
 
\[ y = {\mathrm e}^{\operatorname {RootOf}\left (x^{2} {\mathrm e}^{\textit {\_Z}}+{\mathrm e}^{2 \textit {\_Z}}+c_{1} {\mathrm e}^{\textit {\_Z}}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}-x \right )} \]

Solution by Mathematica

Time used: 0.183 (sec). Leaf size: 22

DSolve[(2*x*y[x]^2-y[x])+(y[x]^2+x+y[x])*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [x^2-\frac {x}{y(x)}+y(x)+\log (y(x))=c_1,y(x)\right ] \]