Internal
problem
ID
[8787]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
75
Date
solved
:
Wednesday, March 05, 2025 at 06:48:28 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = x(t)+y(t), diff(y(t),t) = y(t), diff(z(t),t) = z(t)]; dsolve(ode);
ode={D[x[t],t]== x[t]+y[t],D[y[t],t] == y[t],D[z[t],t]==z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-x(t) - y(t) + Derivative(x(t), t),0),Eq(-y(t) + Derivative(y(t), t),0),Eq(-z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)