56.1.91 problem 89

Internal problem ID [8803]
Book : Own collection of miscellaneous problems
Section : section 1.0
Problem number : 89
Date solved : Thursday, March 13, 2025 at 06:09:38 PM
CAS classification : [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y^{\prime \prime }-y^{\prime } y&=2 x \end{align*}

Maple. Time used: 0.068 (sec). Leaf size: 147
ode:=diff(diff(y(x),x),x)-y(x)*diff(y(x),x) = 2*x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-\operatorname {WhittakerM}\left (\frac {i c_{1} \sqrt {2}}{8}+1, \frac {1}{4}, \frac {i \sqrt {2}\, x^{2}}{2}\right ) \left (6+i c_{1} \sqrt {2}\right )+8 c_{2} \operatorname {WhittakerW}\left (\frac {i c_{1} \sqrt {2}}{8}+1, \frac {1}{4}, \frac {i \sqrt {2}\, x^{2}}{2}\right )+2 \left (1-i \left (x^{2}-\frac {c_{1}}{2}\right ) \sqrt {2}\right ) \left (c_{2} \operatorname {WhittakerW}\left (\frac {i c_{1} \sqrt {2}}{8}, \frac {1}{4}, \frac {i \sqrt {2}\, x^{2}}{2}\right )+\operatorname {WhittakerM}\left (\frac {i c_{1} \sqrt {2}}{8}, \frac {1}{4}, \frac {i \sqrt {2}\, x^{2}}{2}\right )\right )}{2 x \left (c_{2} \operatorname {WhittakerW}\left (\frac {i c_{1} \sqrt {2}}{8}, \frac {1}{4}, \frac {i \sqrt {2}\, x^{2}}{2}\right )+\operatorname {WhittakerM}\left (\frac {i c_{1} \sqrt {2}}{8}, \frac {1}{4}, \frac {i \sqrt {2}\, x^{2}}{2}\right )\right )} \]
Mathematica. Time used: 48.14 (sec). Leaf size: 318
ode=D[y[x],{x,2}]+D[y[x],x]*y[x]==2*x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt [4]{2} \left (\sqrt [4]{2} x \operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (-\sqrt {2} c_1-2\right ),i \sqrt [4]{2} x\right )+2 i \operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (2-\sqrt {2} c_1\right ),i \sqrt [4]{2} x\right )+c_2 \left (2 \operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (\sqrt {2} c_1+2\right ),\sqrt [4]{2} x\right )-\sqrt [4]{2} x \operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (\sqrt {2} c_1-2\right ),\sqrt [4]{2} x\right )\right )\right )}{\operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (-\sqrt {2} c_1-2\right ),i \sqrt [4]{2} x\right )+c_2 \operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (\sqrt {2} c_1-2\right ),\sqrt [4]{2} x\right )} \\ y(x)\to \sqrt {2} x-\frac {2 \sqrt [4]{2} \operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (\sqrt {2} c_1+2\right ),\sqrt [4]{2} x\right )}{\operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (\sqrt {2} c_1-2\right ),\sqrt [4]{2} x\right )} \\ y(x)\to \sqrt {2} x-\frac {2 \sqrt [4]{2} \operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (\sqrt {2} c_1+2\right ),\sqrt [4]{2} x\right )}{\operatorname {ParabolicCylinderD}\left (\frac {1}{4} \left (\sqrt {2} c_1-2\right ),\sqrt [4]{2} x\right )} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x - y(x)*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -(-2*x + Derivative(y(x), (x, 2)))/y(x) + Derivative(y(x), x) cannot be solved by the factorable group method