59.1.32 problem 33

Internal problem ID [9204]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 33
Date solved : Monday, January 27, 2025 at 05:52:03 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 16

dsolve(diff(y(x),x$2)+4*x*diff(y(x),x)+(4*x^2+2)*y(x)=0,y(x), singsol=all)
 
\[ y = {\mathrm e}^{-x^{2}} \left (c_{2} x +c_{1} \right ) \]

Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 20

DSolve[D[y[x],{x,2}]+4*x*D[y[x],x]+(4*x^2+2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{-x^2} (c_2 x+c_1) \]