59.1.35 problem 36

Internal problem ID [9207]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 36
Date solved : Monday, January 27, 2025 at 05:52:05 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 15

dsolve(x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+(x^2+2)*y(x)=0,y(x), singsol=all)
 
\[ y = x \left (\sin \left (x \right ) c_{1} +\cos \left (x \right ) c_{2} \right ) \]

Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 33

DSolve[x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+(x^2+2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 e^{-i x} x-\frac {1}{2} i c_2 e^{i x} x \]