56.3.9 problem 9

Internal problem ID [8867]
Book : Own collection of miscellaneous problems
Section : section 3.0
Problem number : 9
Date solved : Wednesday, March 05, 2025 at 06:57:11 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \end{align*}

With initial conditions

\begin{align*} y^{\prime }\left (1\right )&=0\\ y \left (2\right )&=0 \end{align*}

Maple. Time used: 0.191 (sec). Leaf size: 36
ode:=diff(diff(y(x),x),x)+y(x) = sin(x); 
ic:=D(y)(1) = 0, y(2) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {\left (2 \cos \left (1\right )^{2}-x -\sin \left (2\right )\right ) \cos \left (x \right )}{2}+\frac {\sin \left (x \right ) \left (\sin \left (2\right )-\tan \left (1\right )+\cos \left (2\right )\right )}{2} \]
Mathematica. Time used: 0.026 (sec). Leaf size: 39
ode=D[y[x],{x,2}]+y[x]==Sin[x]; 
ic={Derivative[1][y][1] == 0,y[2]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{4} (\sec (1) \sin (x) (-\sin (1)+\sin (3)+\cos (1)+\cos (3))-2 \cos (x) (x-1+\sin (2)-\cos (2))) \]
Sympy. Time used: 0.124 (sec). Leaf size: 82
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - sin(x) + Derivative(y(x), (x, 2)),0) 
ics = {Subs(Derivative(y(x), x), x, 1): 0, y(2): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (- \frac {x}{2} + \frac {- \sin {\left (2 \right )} \cos {\left (1 \right )} + 2 \cos {\left (1 \right )} \cos {\left (2 \right )} + \sin {\left (1 \right )} \sin {\left (2 \right )}}{2 \cos {\left (1 \right )} \cos {\left (2 \right )} + 2 \sin {\left (1 \right )} \sin {\left (2 \right )}}\right ) \cos {\left (x \right )} + \frac {\left (\sin {\left (1 \right )} \cos {\left (2 \right )} + \cos {\left (1 \right )} \cos {\left (2 \right )}\right ) \sin {\left (x \right )}}{2 \cos {\left (1 \right )} \cos {\left (2 \right )} + 2 \sin {\left (1 \right )} \sin {\left (2 \right )}} \]