Internal
problem
ID
[8922]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
4.0
Problem
number
:
29
Date
solved
:
Wednesday, March 05, 2025 at 07:08:51 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _dAlembert]
ode:=(y(x)-2*x*diff(y(x),x))^2 = diff(y(x),x)^3; dsolve(ode,y(x), singsol=all);
ode=(y[x]-2*x*D[y[x],x])^2== D[y[x],x]^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-2*x*Derivative(y(x), x) + y(x))**2 - Derivative(y(x), x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out