56.4.33 problem 29

Internal problem ID [8922]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 29
Date solved : Wednesday, March 05, 2025 at 07:08:51 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _dAlembert]

\begin{align*} \left (y-2 x y^{\prime }\right )^{2}&={y^{\prime }}^{3} \end{align*}

Maple. Time used: 0.109 (sec). Leaf size: 73
ode:=(y(x)-2*x*diff(y(x),x))^2 = diff(y(x),x)^3; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ \left [x \left (\textit {\_T} \right ) &= \frac {3 \textit {\_T}^{{5}/{2}}+5 c_{1}}{5 \textit {\_T}^{2}}, y \left (\textit {\_T} \right ) = \frac {\textit {\_T}^{{5}/{2}}+10 c_{1}}{5 \textit {\_T}}\right ] \\ \left [x \left (\textit {\_T} \right ) &= \frac {-3 \textit {\_T}^{{5}/{2}}+5 c_{1}}{5 \textit {\_T}^{2}}, y \left (\textit {\_T} \right ) = \frac {-\textit {\_T}^{{5}/{2}}+10 c_{1}}{5 \textit {\_T}}\right ] \\ \end{align*}
Mathematica. Time used: 91.539 (sec). Leaf size: 32354
ode=(y[x]-2*x*D[y[x],x])^2== D[y[x],x]^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-2*x*Derivative(y(x), x) + y(x))**2 - Derivative(y(x), x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out