3.25 problem 1025

Internal problem ID [9359]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 2, linear second order
Problem number: 1025.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

\[ \boxed {y^{\prime \prime }-\left (\frac {m \left (m -1\right )}{\cos \left (x \right )^{2}}+\frac {n \left (n -1\right )}{\sin \left (x \right )^{2}}+a \right ) y=0} \]

Solution by Maple

Time used: 0.375 (sec). Leaf size: 102

dsolve(diff(diff(y(x),x),x)-(m*(m-1)/cos(x)^2+n*(n-1)/sin(x)^2+a)*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = \sin \left (x \right )^{n} \left (c_{1} \cos \left (x \right )^{m} \operatorname {hypergeom}\left (\left [\frac {n}{2}+\frac {m}{2}+\frac {i \sqrt {a}}{2}, \frac {n}{2}+\frac {m}{2}-\frac {i \sqrt {a}}{2}\right ], \left [\frac {1}{2}+m \right ], \cos \left (x \right )^{2}\right )+c_{2} \cos \left (x \right )^{-m +1} \operatorname {hypergeom}\left (\left [\frac {n}{2}-\frac {m}{2}+\frac {i \sqrt {a}}{2}+\frac {1}{2}, \frac {n}{2}-\frac {m}{2}-\frac {i \sqrt {a}}{2}+\frac {1}{2}\right ], \left [\frac {3}{2}-m \right ], \cos \left (x \right )^{2}\right )\right ) \]

Solution by Mathematica

Time used: 1.623 (sec). Leaf size: 158

DSolve[(-a - (-1 + n)*n*Csc[x]^2 - (-1 + m)*m*Sec[x]^2)*y[x] + y''[x] == 0,y[x],x,IncludeSingularSolutions -> True]
                                                                                    
                                                                                    
 

\[ y(x)\to \frac {(-1)^{-m} \cos ^2(x)^{-\frac {m}{2}-\frac {1}{4}} \left (-\sin ^2(x)\right )^{n/2} \left (c_1 (-1)^m \cos ^2(x)^{m+\frac {1}{2}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2} \left (m+n-\sqrt {-a}\right ),\frac {1}{2} \left (m+n+\sqrt {-a}\right ),m+\frac {1}{2},\cos ^2(x)\right )+i c_2 \cos ^2(x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2} \left (-m+n-\sqrt {-a}+1\right ),\frac {1}{2} \left (-m+n+\sqrt {-a}+1\right ),\frac {3}{2}-m,\cos ^2(x)\right )\right )}{\sqrt {\cos (x)}} \]