1.105 problem 105

Internal problem ID [8442]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, linear first order
Problem number: 105.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, _Riccati]

\[ \boxed {x y^{\prime }+a y^{2} x +b y=-c x -d} \]

Solution by Maple

Time used: 0.031 (sec). Leaf size: 403

dsolve(x*diff(y(x),x) + a*x*y(x)^2 + b*y(x) + c*x + d=0,y(x), singsol=all)
 

\[ y \left (x \right ) = -\frac {4 c \left (a \,c^{3} \left (a d -b \sqrt {-a c}\right ) \operatorname {KummerM}\left (\frac {\sqrt {-a c}\, d +c \left (b +2\right )}{2 c}, b +1, 2 x \sqrt {-a c}\right )-\frac {c_{1} \left (a \,d^{2}+b^{2} c \right ) \operatorname {KummerU}\left (\frac {\sqrt {-a c}\, d +c \left (b +2\right )}{2 c}, b +1, 2 x \sqrt {-a c}\right )}{4}+a \,c^{3} \left (b \sqrt {-a c}+a d \right ) \operatorname {KummerM}\left (\frac {\sqrt {-a c}\, d +b c}{2 c}, b +1, 2 x \sqrt {-a c}\right )-\frac {\operatorname {KummerU}\left (\frac {\sqrt {-a c}\, d +b c}{2 c}, b +1, 2 x \sqrt {-a c}\right ) c_{1} \left (b c -\sqrt {-a c}\, d \right )}{2}\right )}{4 a^{2} c^{3} \left (\sqrt {-a c}\, d +b c \right ) \operatorname {KummerM}\left (\frac {\sqrt {-a c}\, d +c \left (b +2\right )}{2 c}, b +1, 2 x \sqrt {-a c}\right )-c_{1} \sqrt {-a c}\, \left (a \,d^{2}+b^{2} c \right ) \operatorname {KummerU}\left (\frac {\sqrt {-a c}\, d +c \left (b +2\right )}{2 c}, b +1, 2 x \sqrt {-a c}\right )+4 c \left (a^{2} c^{2} \left (b c -\sqrt {-a c}\, d \right ) \operatorname {KummerM}\left (\frac {\sqrt {-a c}\, d +b c}{2 c}, b +1, 2 x \sqrt {-a c}\right )+\frac {\operatorname {KummerU}\left (\frac {\sqrt {-a c}\, d +b c}{2 c}, b +1, 2 x \sqrt {-a c}\right ) c_{1} \left (b \sqrt {-a c}+a d \right )}{2}\right )} \]

Solution by Mathematica

Time used: 0.453 (sec). Leaf size: 421

DSolve[x*y'[x] + a*x*y[x]^2 + b*y[x] + c*x + d==0,y[x],x,IncludeSingularSolutions -> True]
                                                                                    
                                                                                    
 

\begin{align*} y(x)\to -\frac {i \left (\sqrt {c} c_1 \operatorname {HypergeometricU}\left (\frac {1}{2} \left (b+\frac {i \sqrt {a} d}{\sqrt {c}}\right ),b,2 i \sqrt {a} \sqrt {c} x\right )+c_1 \left (b \sqrt {c}+i \sqrt {a} d\right ) \operatorname {HypergeometricU}\left (\frac {1}{2} \left (b+\frac {i \sqrt {a} d}{\sqrt {c}}+2\right ),b+1,2 i \sqrt {a} \sqrt {c} x\right )+\sqrt {c} \left (2 L_{-\frac {b}{2}-\frac {i \sqrt {a} d}{2 \sqrt {c}}-1}^b\left (2 i \sqrt {a} \sqrt {c} x\right )+L_{-\frac {b}{2}-\frac {i \sqrt {a} d}{2 \sqrt {c}}}^{b-1}\left (2 i \sqrt {a} \sqrt {c} x\right )\right )\right )}{\sqrt {a} \left (c_1 \operatorname {HypergeometricU}\left (\frac {1}{2} \left (b+\frac {i \sqrt {a} d}{\sqrt {c}}\right ),b,2 i \sqrt {a} \sqrt {c} x\right )+L_{-\frac {b}{2}-\frac {i \sqrt {a} d}{2 \sqrt {c}}}^{b-1}\left (2 i \sqrt {a} \sqrt {c} x\right )\right )} \\ y(x)\to \frac {\frac {\left (\sqrt {a} d-i b \sqrt {c}\right ) \operatorname {HypergeometricU}\left (\frac {1}{2} \left (b+\frac {i \sqrt {a} d}{\sqrt {c}}+2\right ),b+1,2 i \sqrt {a} \sqrt {c} x\right )}{\operatorname {HypergeometricU}\left (\frac {1}{2} \left (b+\frac {i \sqrt {a} d}{\sqrt {c}}\right ),b,2 i \sqrt {a} \sqrt {c} x\right )}-i \sqrt {c}}{\sqrt {a}} \\ \end{align*}