3.116 problem 1120

Internal problem ID [9450]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 2, linear second order
Problem number: 1120.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

\[ \boxed {y^{\prime \prime } x +\left (x a +b \right ) y^{\prime }+\left (c x +d \right ) y=0} \]

Solution by Maple

Time used: 0.094 (sec). Leaf size: 109

dsolve(x*diff(diff(y(x),x),x)+(a*x+b)*diff(y(x),x)+(c*x+d)*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = {\mathrm e}^{-\frac {x \left (\sqrt {a^{2}-4 c}+a \right )}{2}} \left (\operatorname {KummerU}\left (\frac {b \sqrt {a^{2}-4 c}+a b -2 d}{2 \sqrt {a^{2}-4 c}}, b , \sqrt {a^{2}-4 c}\, x \right ) c_{2} +\operatorname {KummerM}\left (\frac {b \sqrt {a^{2}-4 c}+a b -2 d}{2 \sqrt {a^{2}-4 c}}, b , \sqrt {a^{2}-4 c}\, x \right ) c_{1} \right ) \]

Solution by Mathematica

Time used: 0.089 (sec). Leaf size: 135

DSolve[(d + c*x)*y[x] + (b + a*x)*y'[x] + x*y''[x] == 0,y[x],x,IncludeSingularSolutions -> True]
                                                                                    
                                                                                    
 

\[ y(x)\to e^{-\frac {1}{2} x \left (\sqrt {a^2-4 c}+a\right )} \left (c_1 \operatorname {HypergeometricU}\left (\frac {a b+\sqrt {a^2-4 c} b-2 d}{2 \sqrt {a^2-4 c}},b,\sqrt {a^2-4 c} x\right )+c_2 L_{-\frac {a b+\sqrt {a^2-4 c} b-2 d}{2 \sqrt {a^2-4 c}}}^{b-1}\left (\sqrt {a^2-4 c} x\right )\right ) \]