7.219 problem 1810 (book 6.219)

Internal problem ID [10132]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 6, non-linear second order
Problem number: 1810 (book 6.219).
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [NONE]

\[ \boxed {\left (c +2 b x +a \,x^{2}+y^{2}\right )^{2} y^{\prime \prime }+y d=0} \]

Solution by Maple

Time used: 0.078 (sec). Leaf size: 336

dsolve((c+2*b*x+a*x^2+y(x)^2)^2*diff(diff(y(x),x),x)+d*y(x)=0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= \operatorname {RootOf}\left (a \left (\int _{}^{\textit {\_Z}}\frac {\sqrt {\left (\textit {\_f}^{2}+1\right ) \left (-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+\textit {\_f}^{2} a^{2} c_{1} -c \,\textit {\_f}^{2} a +b^{2} \textit {\_f}^{2}+a^{2} c_{1} +d \right )}}{-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+\textit {\_f}^{2} a^{2} c_{1} -c \,\textit {\_f}^{2} a +b^{2} \textit {\_f}^{2}+a^{2} c_{1} +d}d \textit {\_f} \right ) \sqrt {a c -b^{2}}-a \arctan \left (\frac {a x +b}{\sqrt {a c -b^{2}}}\right )+c_{2} \sqrt {a c -b^{2}}\right ) \sqrt {a \,x^{2}+2 b x +c} \\ y \left (x \right ) &= \operatorname {RootOf}\left (-a \left (\int _{}^{\textit {\_Z}}\frac {\sqrt {\left (\textit {\_f}^{2}+1\right ) \left (-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+\textit {\_f}^{2} a^{2} c_{1} -c \,\textit {\_f}^{2} a +b^{2} \textit {\_f}^{2}+a^{2} c_{1} +d \right )}}{-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+\textit {\_f}^{2} a^{2} c_{1} -c \,\textit {\_f}^{2} a +b^{2} \textit {\_f}^{2}+a^{2} c_{1} +d}d \textit {\_f} \right ) \sqrt {a c -b^{2}}-a \arctan \left (\frac {a x +b}{\sqrt {a c -b^{2}}}\right )+c_{2} \sqrt {a c -b^{2}}\right ) \sqrt {a \,x^{2}+2 b x +c} \\ \end{align*}

Solution by Mathematica

Time used: 65.538 (sec). Leaf size: 260

DSolve[d*y[x] + (c + 2*b*x + a*x^2 + y[x]^2)^2*y''[x] == 0,y[x],x,IncludeSingularSolutions -> True]
                                                                                    
                                                                                    
 

\begin{align*} \text {Solve}\left [a \arctan \left (\frac {a x+b}{\sqrt {a c-b^2}}\right )+\sqrt {a c-b^2} \int _1^{\frac {y(x)}{\sqrt {c+x (2 b+a x)}}}\frac {a \left (K[2]^2+1\right )}{\sqrt {\left (K[2]^2+1\right ) \left (d+\left (K[2]^2+1\right ) \left (c_1 a^2+\left (b^2-a c\right ) K[2]^2\right )\right )}}dK[2]&=c_2 \sqrt {a c-b^2},y(x)\right ] \\ \text {Solve}\left [a \arctan \left (\frac {a x+b}{\sqrt {a c-b^2}}\right )-\sqrt {a c-b^2} \int _1^{\frac {y(x)}{\sqrt {c+x (2 b+a x)}}}\frac {a \left (K[3]^2+1\right )}{\sqrt {\left (K[3]^2+1\right ) \left (d+\left (K[3]^2+1\right ) \left (c_1 a^2+\left (b^2-a c\right ) K[3]^2\right )\right )}}dK[3]&=c_2 \sqrt {a c-b^2},y(x)\right ] \\ \end{align*}