9.57 problem 1912

Internal problem ID [10235]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 8, system of first order odes
Problem number: 1912.
ODE order: 1.
ODE degree: 1.

Solve \begin {align*} x_{1}^{\prime }\left (t \right )&=a x_{2} \left (t \right )+b x_{3} \left (t \right ) \cos \left (c t \right )+b x_{4} \left (t \right ) \sin \left (c t \right )\\ x_{2}^{\prime }\left (t \right )&=-a x_{1} \left (t \right )+b x_{3} \left (t \right ) \sin \left (c t \right )-b x_{4} \left (t \right ) \cos \left (c t \right )\\ x_{3}^{\prime }\left (t \right )&=-b x_{1} \left (t \right ) \cos \left (c t \right )-b x_{2} \left (t \right ) \sin \left (c t \right )+a x_{4} \left (t \right )\\ x_{4}^{\prime }\left (t \right )&=-b x_{1} \left (t \right ) \sin \left (c t \right )+b x_{2} \left (t \right ) \cos \left (c t \right )-a x_{3} \left (t \right ) \end {align*}

Solution by Maple

Time used: 1.0 (sec). Leaf size: 10632

dsolve([diff(x__1(t),t)=a*x__2(t)+b*x__3(t)*cos(c*t)+b*x__4(t)*sin(c*t),diff(x__2(t),t)=-a*x__1(t)+b*x__3(t)*sin(c*t)-b*x__4(t)*cos(c*t),diff(x__3(t),t)=-b*x__1(t)*cos(c*t)-b*x__2(t)*sin(c*t)+a*x__4(t),diff(x__4(t),t)=-b*x__1(t)*sin(c*t)+b*x__2(t)*cos(c*t)-a*x__3(t)],singsol=all)
 

\begin{align*} \left \{x_{1} \left (t \right ) &= c_{2} +c_{3} \sin \left (c t \right )+c_{4} \cos \left (c t \right ), x_{2} \left (t \right ) &= -\cos \left (c t \right ) c_{3} +\sin \left (c t \right ) c_{4} +c_{1}, x_{3} \left (t \right ) &= \frac {b \left (\cos \left (c t \right ) c_{1} a -\sin \left (c t \right ) c_{2} a -c_{3} a -c_{3} c \right )}{\left (a +c \right ) a}, x_{4} \left (t \right ) &= \frac {b \left (\cos \left (c t \right ) c_{2} a +\sin \left (c t \right ) c_{1} a +c_{4} a +c_{4} c \right )}{\left (a +c \right ) a}\right \} \\ \text {Expression too large to display} \\ \end{align*}

Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 782

DSolve[{x1'[t]==a*x2[t]+b*x3[t]*Cos[c*t]+b*x4[t]*Sin[c*t],x2'[t]==-a*x1[t]+b*x3[t]*Sin[c*t]-b*x4[t]*Cos[c*t],x3'[t]==-b*x1[t]*Cos[c*t]-b*x2[t]*Sin[c*t]+a*x4[t],x4'[t]==-b*x1[t]*Sin[c*t]+b*x2[t]*Cos[c*t]-a*x3[t]},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions -> True]
 

\begin{align*} \text {x1}(t)\to c_1 \cos \left (\frac {1}{2} t \left (\sqrt {4 a^2+4 a c+4 b^2+c^2}+c\right )\right )+c_2 \sin \left (\frac {1}{2} t \left (\sqrt {4 a^2+4 a c+4 b^2+c^2}+c\right )\right )+c_3 \cos \left (t \left (\frac {c}{2}-\frac {1}{2} \sqrt {(2 a+c)^2+4 b^2}\right )\right )+c_4 \sin \left (t \left (\frac {c}{2}-\frac {1}{2} \sqrt {(2 a+c)^2+4 b^2}\right )\right ) \\ \text {x2}(t)\to -c_2 \cos \left (\frac {1}{2} t \left (\sqrt {4 a^2+4 a c+4 b^2+c^2}+c\right )\right )+c_1 \sin \left (\frac {1}{2} t \left (\sqrt {4 a^2+4 a c+4 b^2+c^2}+c\right )\right )-c_4 \cos \left (t \left (\frac {c}{2}-\frac {1}{2} \sqrt {(2 a+c)^2+4 b^2}\right )\right )+c_3 \sin \left (t \left (\frac {c}{2}-\frac {1}{2} \sqrt {(2 a+c)^2+4 b^2}\right )\right ) \\ \text {x3}(t)\to \frac {c_4 \left (-\frac {1}{2} \sqrt {(2 a+c)^2+4 b^2}+a+\frac {c}{2}\right ) \cos \left (\frac {1}{2} t \left (\sqrt {4 a^2+4 a c+4 b^2+c^2}+c\right )\right )+c_3 \left (-\frac {1}{2} \sqrt {(2 a+c)^2+4 b^2}+a+\frac {c}{2}\right ) \sin \left (\frac {1}{2} t \left (\sqrt {4 a^2+4 a c+4 b^2+c^2}+c\right )\right )+c_2 \left (\frac {1}{2} \sqrt {(2 a+c)^2+4 b^2}+a+\frac {c}{2}\right ) \cos \left (t \left (\frac {c}{2}-\frac {1}{2} \sqrt {(2 a+c)^2+4 b^2}\right )\right )+c_1 \left (\frac {1}{2} \sqrt {(2 a+c)^2+4 b^2}+a+\frac {c}{2}\right ) \sin \left (t \left (\frac {c}{2}-\frac {1}{2} \sqrt {(2 a+c)^2+4 b^2}\right )\right )}{b} \\ \text {x4}(t)\to \frac {-\left (c_3 \left (-\frac {1}{2} \sqrt {(2 a+c)^2+4 b^2}+a+\frac {c}{2}\right ) \cos \left (\frac {1}{2} t \left (\sqrt {4 a^2+4 a c+4 b^2+c^2}+c\right )\right )\right )+c_4 \left (-\frac {1}{2} \sqrt {(2 a+c)^2+4 b^2}+a+\frac {c}{2}\right ) \sin \left (\frac {1}{2} t \left (\sqrt {4 a^2+4 a c+4 b^2+c^2}+c\right )\right )-c_1 \left (\frac {1}{2} \sqrt {(2 a+c)^2+4 b^2}+a+\frac {c}{2}\right ) \cos \left (t \left (\frac {c}{2}-\frac {1}{2} \sqrt {(2 a+c)^2+4 b^2}\right )\right )+c_2 \left (\frac {1}{2} \sqrt {(2 a+c)^2+4 b^2}+a+\frac {c}{2}\right ) \sin \left (t \left (\frac {c}{2}-\frac {1}{2} \sqrt {(2 a+c)^2+4 b^2}\right )\right )}{b} \\ \end{align*}